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1 Report Summary

Objective:

The objective is to identify loss and degradation mechanisms relevant to the frequency control
resonator performance as the resonator dimensions reduce to the nanodimensional spatial scale.
The Department of the Army interest in scaling such devices into the nanodimensional region
stems from the technical projection that such resonators can operate at frequencies into the low
GHz spectral region thus providing a low cost, integratable NEMS solid state device option for
frequency control electronic applications relevant to jam resistant secure communications. The
key questions regarding NEMS resonator performance are the fundamental physical limitations
that arise in quality factor Q and noise figure as the resonator is reduced to nanodimensions in
order to achieve the higher frequencies of device operation. Such physical limitations may also
present barriers in other NEMS smart actuator and sensor electronic device applications.

Approach:

The technical approach considers non-equilibrium heat generation and redistribution processes
from mechanical strain during high frequency NEMS operation beyond the conventional heat dif-
fusion and local temperature approximation. A semiclassical phonon dynamical picture is intro-
duced to go beyond the conventional models. Scaling laws relevant to the appropriate phonon
transport regimes and their transition boundaries are delineated, analyzed, and compared with
results of detailed microscopic descriptions. Thus, the research approach involves scaling anal-
ysis, coupled with analytical and numerical modeling of phonon flow and heat redistribution in
nanoscale resonators. Specifically, the following technical milestones were pursued:

1. Establish a picture of the beam dynamics in a non-equilibrium thermodynamical framework.
This requires a more refined look at the approximations of the Euler-Bernoulli equation
both with and without the Timoshenko rotational inertia and shear corrections to the beam
dynamics, and generalizations of stress-strain relations in the presence of thermal gradients.

2. For intrinsic phonon-mediated dissipation mechanisms, formulate scaling laws based on re-
lations between the key spatial and temporal characteristics of phonons, i.e., mean free path
lph and phonon relaxation time τph, and the relevant physical parameters of the NEMS struc-
ture, that is beam thickness t, length L, and resonator operational frequency ν.

3. Scaling laws relevant to the appropriate phonon transport regimes and their transition bound-
aries will be analyzed and compared with results of more microscopic analysis and theory.

4. Analyze both surface-assisted and anharmonic coupling of flexural modes with thermalized
phonons, focusing especially on treatment of the non-equilibrium phonons in the limit of the
high frequency fundamental mode of the resonator.
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5. Formulate robust treatment of phonons under non-equilibrium thermodynamic conditions in
flexural nanobeams by introducing Boltzmann (or quantum Wigner-Boltzmann) framework
for description of phonon transport; conduct analysis of internal thermal phonon flow inside
the beam.

6. Consider how influences of the naturally existing beam surface strain and surface roughness
can be integrated into the general description of the phonon flow. Evaluate surface effects and
their scaling properties in terms of surface-to-volume importance as the resonator geometry
approaches the nanolimit.

7. Develop a reliable quantification of the Q factor and noise characteristics in presence of
non-diffusive phonon transport.

Relevance to Army:

NEMS have recently attracted great interest in miniaturized device design and actuation for unique
potential in military and dual use civil applications. Their impact is pervasive, spanning the broad
fields of metrology, engineering, life science, and medicine. In particular, for Department of Army,
NEMS resonators have been the focus of great attention for light-weight, robust, on-chip, high-Q
resonators and oscillators for frequency control electronics relevant to secure communications.
Also, the possibility of obtaining resonators with high operating frequencies into the 1–10 GHz
region, with small mass and high-Q suggests NEMS resonators and cantilevers as candidates for
actuators and sensors in smart and autonomous systems with unprecedented sensitivities.

Accomplishments:

• Material parameters were successfully identified for the basic high frequency NEMS res-
onator designs; “operational frequency vs. spatial dimensions” maps have been established
for the NEMS resonator from the Euler-Bernoulli equation including the Timoshenko rota-
tional inertia and shear corrections.

• Major intrinsic dissipative mechanisms related to thermoelastic loss and phonon-phonon
interactions and their scaling properties have been identified and strategically mapped to
provide insightful physical analysis.

• From the developed scaling studies, it is theoretically noted that, in the 1–10 GHz operational
frequency regime, the NEMS resonator thermal dynamics routinely goes beyond the limits
of the local temperature approximation, not at all due to the often considered time constraint
of the high frequency limit (which requires ν ≈ τ−1

ph , with τph ≈ 10 ps at room temperature),
but, in contrast, due to sharp spatial inhomogeneity in strain pattern induced by flexure across
the thin (t < lph, with lph ≈ 50 nm at T = 300 K in Si) beam cross section. This spatial
consideration leads to rapid ballistic transfer of phonons across the beam and suppression
of the dissipation mechanism associated with the entropy production due to inter-branch
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phonon-phonon thermal equilibration. The theoretical analysis is formulated and conducted
in the Boltzmann framework to capture the proper phonon dynamics.

• Surface properties are heuristically included into the model description opening avenues to
meaningful analytical assessment of the surface effects on the dissipation in NEMS and
their effects on surface-to-volume scaling as the resonator scales toward the ultimate NEMS
limit; as the resonator shrinks, the surface effects become influential in degrading the Q of
the lowest modes of the resonator.

Collaborations and Technology Transfer

• The results of this investigation are shared and discussed on the regular basis with Dr. Madan
Dubey of ARL and Dr. Arthur Ballato of CECOM.

• We are in contact with the group of Prof. M. Zikry at NCSU for the possibility of advanced
multiscale numerical modeling of these systems.

Resulting Journal Publications

A scientific publication describing heat dissipation in nanoscaled flexural resonators is anticipated.
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2 Approach, rationale, and accomplishments

Below we describe details of our results and primary approach. The technical approach considered
non-equilibrium heat generation and redistribution processes from mechanical strain during high
frequency NEMS operation beyond the conventional heat diffusion and local temperature approx-
imation. A semiclassical phonon dynamical picture was introduced to go beyond the conventional
models. Scaling laws relevant to the appropriate phonon transport regimes and their transition
boundaries were delineated, analyzed, and compared with results of detailed microscopic descrip-
tions. Thus, the research approach involved scaling analysis, coupled with analytical and numerical
modeling of phonon flow and heat redistribution in nanoscale resonators.

2.1 Picture of the beam dynamics.

Flexural modes available to the double clamped resonator for large length to thickness aspect ratios
L/t > 10 can be described analytically by the Euler-Bernoulli equation of solid mechanics in the
limit of no energy dissipation, and in the continuum approximation [3, 1]. Applying this long-
beam approximation of the Euler-Bernoulli theory, one arrives at the equation for the transverse
displacement u(z, t) for an undriven beam along the direction of its length, z, as

ρA
∂2u

∂t2
+

∂2

∂z2
EI

∂2u

∂z2
= 0.

Here ρ is the material density, A is the area of the beam cross-section, E is the Young modulus,
I is the cross-sectional area moment of inertia (bending moment of inertia), and EI is known as
the flexural rigidity of the beam. The boundary conditions specify the beam clamping conditions.
In particular, for the rigidly clamped boundary condition, u = 0 and u′ ≡ ∂u/∂z = 0. Thus, for
the resonator, the eigensolution for a homogeneous beam of length L and rectangular cross section
w × t (i. e., A = wt, I = wt3/12), clamped at beam ends at z = 0 and z = L, can be written in
phasor form as

un(z, t) = Un(z)eiΩnt,

where
Un(z) = Cn1[cos(knz) − cosh(knz)] + Cn2[sin(knz) − sinh(knz)],

with frequency

Ωn =

√
EI

ρA
k2

n =

√
E

ρ
tk2

n. (1)

Here kn is chosen to satisfy the boundary conditions, and is a solution of the transcendental equa-
tion

cos(knL) cosh(knL) = 1;
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it is found that knL ≈ 4.730, 7.853, 10.996 for the first three modes. Normalization for the mode
amplitudes is conventionally chosen as

∫ L

0

dz U∗
nUm = L3δnm.

Similar equations can be derived for the cantilever structure, the difference is in the boundary
condition at one end, which, unlike double clamped bridge, is left free for the cantilever.

While the Euler-Bernoulli theory works well for the relatively long beams, the importance of
the Timoshenko rotational inertia and shear corrections [4] to the beam dynamics progressively
increases for smaller L/t ratios. Of course, our consideration here is limited in both approaches to
the small flexural vibrations, before nonlinearities start to build up in the resonator behavior.

As a result of our efforts, material parameters were successfully identified for the basic high fre-
quency NEMS resonator designs; “operational frequency vs. spatial dimensions” maps have been
established for the NEMS resonator from the Euler-Bernoulli equation including the Timoshenko
corrections.

In Fig. 1 we present such a diagram showing frequency of the Si double clamped NEMS res-
onator in dependence on the beam length and thickness. Two solid lines present results of calcu-
lation of the equi-frequency fundamental mode lines in the framework of the Timoshenko theory
allowing arbitrary L/t ratio, while dashed curve is a result of the simple Euler-Bernoulli approx-
imation. Since the mode frequency in the Euler-Bernoulli framework is given by Eq. (1), the
dashed curve is simply a straight line in the log–log plot. Overall, for both treatments, the fun-

Figure 1: Graphic of NEMS resonator operational frequency ν = 1 GHz and ν = 10 GHz with beam
parameters length (L) and thickness (t) from the modified Euler-Bernoulli theory.
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damental frequency Ω1 of the oscillator rises as the resonator size and/or aspect ratio (length to
thickness) is reduced, as desired. In this graph we have also shown the phonon mean free path
(lph ≈ 50 nm in Si at room temperature) on the t axis. The following observations can be made:

• Aspect ratio, L/t, should be large (ideally, greater than 10). Otherwise, deviations from
the lowest order Euler-Bernoulli theory increase rapidly (e.g., via Timoshenko corrections);
this affects the analytics of NEMS resonator: operational frequency, losses, and limits on
magnitude of linear regime.

• 10 GHz resonator with a reasonably large aspect ratio L/t (ideally greater than 10 or at
least greater than 5) will inevitably have characteristically small absolute L and t values.
In particular, its thickness can routinely be smaller than the phonon mean free path, lph,
establishing regime of ballistic heat transfer in the beam [5]. With progressive scaling of the
surface-to-volume ratio, surface effects will also play a significant role.

• Local compression and dilation of the beam material is accompanied by the creation of non-
equilibrium phonon distributions and temperature gradients and, consequently, processes of
heat redistribution and entropy generation. For beams with substantially large aspect ratios
(L/t > 10), thermal transport is approximately one-dimensional (and takes place in the plane
of the beam cross section); otherwise, the picture of heat redistribution from mechanical
strain is complicated and multidimensional.

2.1.1 Structure of the strain field

The structure of the strain field corresponding to a particular flexural mode can be established as
follows. For thin beams, the only nonzero components of the strain tensor are defined by the mode
deflection amplitude u(z) as

uzz = −y
∂2u

∂z2
, (2)

uxx = uyy = −σuzz (3)

where σ is the Poisson ratio. The trace of the strain tensor is then∑
i

uii = −(1 − 2σ)yu′′. (4)

The strain pattern is visualized in Fig. 2 for the fundamental flexural mode of the double clamped
resonator. An important consideration is that, assuming that linear thermal expansion coefficient
of the material is not zero, local compression and dilation will be accompanied by the creation of
non-equilibrium phonon distributions, temperature gradients and, consequently processes of heat
redistribution and entropy generation. Another important observation is that only for beams with
large aspect ratios (e. g., L/t greater than 10), thermal transport is approximately one-dimensional.
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2.1.2 Mode energy density and total mechanical energy

The linear energy density along the beam is given, in the phasor form, by

hW (z) =
ρAΩ2

2
[U(z)]2 +

EI

2
[U ′′(z)]

2
,

were the first term is the kinetic energy and the second term is the potential energy of flexural
deformation of the beam. In Fig. 3 the diagram, the kinetic energy density, in phasor form, is
proportional to the square of the fundamental mode eigenfunction U2

1 (red line) and the flexural
deformation energy is proportional to (U ′′

1 )2 (green line). Both energy distributions are highly
uneven along the beam and scale in accordance with L. However, as L is reduced, the relative
amounts of kinetic and flexural energy along the beam remain unchanged for the Euler-Bernoulli
normalized eigenmode U1; this kinetic-flexural energy partition could vary with L only by consid-
ering higher order corrections to the Euler-Bernoulli equation.

Finally, the total energy of the mechanical oscillation is given by

W =

∫
L

dz hW (z). (5)

2.2 Intrinsic dissipation mechanisms and their scaling

Numerous mechanisms were previously proposed as possible limitations to the quality factors of
micro- and nanoresonators [6, 7, 8, 9]. Losses are of primary importance especially for frequency
control devices, as they define noise characteristics by outcome of the fluctuation-dissipation the-
orem. Some mechanisms can be identified as extrinsic to the microresonator and, thus, in principle
can be eliminated, while, intrinsic mechanisms, persist due to core material properies of the beam.
For example, air damping can be eliminated in the vacuum-operated resonators. Doping impuri-
ties, effect of the attachment/support structure, and surface absorption/desorption processes can be
accounted for as external.

For intrinsic phonon-mediated dissipation mechanisms, scaling laws can be formulated based

Figure 2: Time-alterating compressive (red) and tensile (blue) strains in the beam are shown at deflection
down for the fundamental flexural mode of the double clamped resonator. To recall, we are interested in the
limit L/t � 1, L ≈ ultrasubmicron.
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on relations between the key spatial and temporal characteristics of phonons, i.e., mean free path
lph and phonon relaxation time τph, and the relevant physical parameters of the NEMS structure,
that is beam thickness t, length L, and resonator operational frequency ν.

We start with a short review of the relevant phenomena involved in the heat transfer processes
on micro- and nanoscale.

2.2.1 Fourier’s law

Standard formulation of the equation for the macroscopic heat flow

q = −κ∇T

is named Fourier’s law and connects heat flow with the temperature gradient. The coefficient of the
proportionality is the thermal conductivity κ. The failure of this formulation on the microscopic
time and space scales is due to neglectance of the actual physical processes responsible for the heat
transfer. Inclusion of these mechanisms leads on the macroscopic level to the appearance of the
microscopic build-up time constant τ ,

q + τ
∂q

∂t
= −κ∇T

the formulation typically attributed the Cattanco and Vernotte who independently proposed this
heuristic generalization. This leads to the so-called hyperbolic heat equation

κ∇2T − Cv
∂T

∂t
− τCv

∂2T

∂t2
= −p − τ

∂p

∂t
.

Figure 3: Linear energy density in phasor form for the fundamental flexural mode of the double clamped
resonator.
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Here Cv is the specific heat, p is the power density. In absence of τ we obtain the classical heat
diffusion law. Explicitly,

τ =
3κ

Cvc2

is the microscopic thermal time. On the macroscopic level, it brings up the phenomenon of the
non-diffusive heat transfer by means of the quickly decaying heat waves.

Taking for silicon at room temperature the standard set of parameters c = 5880 m/s= 5.88 nm/ps,
κ = 160 W/mK, and Cv = 1.78× 105 J/m3K, we obtain for the characteristic phonon microscopic
time τph ≈ 3×3.5 ps≈ 10 ps, which corresponds to the phonon mean free path lph = cτph ≈ 50 nm.

A different, macroscopic time can be associated in NEMS resonator with the heat diffusion
across the beam width as a result of the flexural vibrations. A simple treatment due to Zener [8]
reveals

τdiff =
t2Cv

π2κ
=

3

π2

(
t

c

)2
1

τph

.

Introducing τballistic =
√

3t/c — a time neccesary for a typical phonon to ballistically traverse the
beam width, we conclude that

τdiff =
1

π2

τ 2
ballistic

τph

=
3

π2

t2

l2ph

τph.

Thus, quite obviously, for t � lph slow diffusive heat relaxation dominates and the heat transfer is
essentially Fourier’s transfer.

The standard theory of thermoelastisity relies essentially on the validity of the Fourier heat
law [8, 16], thus, either this theory should be upgraded to incorporate non-Fourier’s effects in the
calculational framework (the path chosen, in particular by Sun et al.[17]; it is worth to mention
that estimates suggest that in the interval of parameter values considered in this paper an effect of
non-Fourrier heat transfer is minimal), or microscopic relaxation processes should be considered
and accoounted for separately in the analysis of intrinsic losses. In case of insulators at elevated
temperatures, the specific type of phonon-phonon interactions represent themselves as a so-called
Akhiezer effect.

2.2.2 Akhiezer effect

Akhiezer effect is most commonly considered in relation to the losses of ultrasonic waves in di-
electric crystals at elevated temperatures and is a result of the phonon-phonon interactions. Due to
anharmonicity, strain modulates phonon frequencies (and, strictly speaking, in a different fashion
for different phonon modes). As a result, original local equilibrium phonon distribution becomes
distorted and requires a microscopic time τ to reestablish phonon equilibrium locally. This irre-
versible process requires absorption of elastic energy to generate entropy in the phonon sybsys-
tem. A simple qualitative treatment was published by Bömmel and Dransfeld [13]. Essentially,
they have split phonon modes in two groups - those, experiencing positive temperature changes
and those, experiencing negative or no changes. At the same time, no intragroup deviation from
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the equilibrium distribution was assumed. Thus, intergroup temperature relaxation was the main
process, giving

Q−1 =
A

Ω
∝ CvTγ2

E
Ωτ

at sufficiently low frequencies of the acoustic vibrations Ωτ � 1. Here γ =< γjk > is the average
Grüneisen constant

(∆c/c)jk = γjk(∆ρ/ρ),

defined by the material anharmonicity (as given by third-order elestic moduli, or, e. g., related to
the temperature expansion coefficient αT as γ = 3αT K/Cv).

It is interesting to see that expressing γ via αT and K via E ≈ 3K in the prefactor for micro-
scopic losses Q−1, and making use of Cv ≈ Cp, we readily recover the conventional thermoelastic
prefactor α2

T TE/Cp. Of course, a number of approximations led to this coinsidence, in particular,
assumption of the high temperature T > ΘD, which is obviously questionable at room tempera-
ture for the silicon with ΘD = 665 K, assumption of the simple Debye phonon spectrum, and the
validity of the application of the Grüneisen constant average.

More advanced microscopic treatment was proposed by Woodruff and Ehrenreich [12], we
return to this publication later.

2.2.3 Scaling of losses with resonator dimensions

Applying results of these early developments, we have analyzed major intrinsic dissipative mech-
anisms related to thermoelastic loss [10] and phonon-phonon interactions [11]. Their scaling
properties have been identified and strategically mapped to provide insightful physical analysis.
Specifically, from the developed scaling studies, it was theoretically noted that, in the 1–10 GHz
operational frequency regime, the NEMS resonator thermal dynamics routinely goes beyond the
limits of the local temperature approximation, not at all due to the often considered time constraint
of the high frequency limit (which requires ν ≈ τ−1

ph , with τph ≈ 10 ps at room temperature), but,
in contrast, due to sharp spatial inhomogeneity in strain pattern induced by flexure across the thin
(t < lph, with lph ≈ 50 nm at T = 300 K in Si, see Fig. 4) beam cross section. This spatial
consideration leads, qualitatively, to rapid ballistic transfer of phonons across the beam and sup-
pression of the dissipation mechanism associated with the entropy production due to inter-branch
phonon-phonon thermal equilibration. It is further noted that the more consistent theoretical analy-
sis should be formulated and conducted in the Boltzmann framework to capture the proper phonon
dynamics.

2.3 Phonons under non-equilibrium thermodynamic conditions in flexural
nanobeams

A quantitative description of the processes of heat generation and redistribution in thin flexural
beams has been achieved by applying the Boltzmann formalism to capture dynamics of the non-
equilibrium phonon distribution resulting from the spatially inhomogeneous mechanical compres-
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sion and dilation. The multidimensional integro-differential equation has been derived for the
phonon distribution function, encompassing effects of the modulation of the phonon frequencies
with applied spacially inhomogeneous strain, phonon ballistic transfer, and scattering processes,
leading to thermalization in the phonon ensemble. This allowed a reliable quantification of the
resonator quality factor Q in presence of non-diffusive phonon transport.

2.3.1 Phonon Hamiltonian in presence of strain

The phonon Hamiltonian for a particle with wave vector q (for simplicity of notation, q includes
both the wave vector and the index of the phonon branch) is

H = �ω(q, r, t) = �ω0(q) [1 + α(q, r, t)] .

In the presence of strain, in the lowest order [11]

α(q, r, t) = −
∑
ik

γik(q)uik(r, t),

where uik is the strain tensor and γik(q) is the generalized Grüeneisen tensor [12]. The only non-
zero components of the strain tensor in the beam were given in Eqs. (2), (3) above. With that, we
can write explicitly

α(q, r, t) =

[
(1 + σ)γzz(q) − σ

∑
i

γii(q)

]
yu′′(z).

Now identifying all diagonal components γii of the tensor with the single Grüneisen constant γ in
the theory of the thermal expansion, we can simplify further, so that

α(q, r, t) = −γ
∑

i

uii = (1 − 2σ)γyu′′(z). (6)

This simplification that γ is scalar and q-independent was historically made in the early devel-
opment of bulk thermal expansion theory and has served fairly well in simple situations requiring
exclusively phonon bulk averages; in the limiting case where the nanoregime is in effect, averaging
with respect to

∑
i γii and γzz is not so easily justifiable, especially when one needs to accomo-

date the physically dictated inherent anisotropy into the analysis of the degradation processes. For
example, reducing to a single constant, γ, artificially eradicates the Akhiezer effect. Therefore, to
preserve the physical consequences of the Akhiezer phenomenology, especially at the NEMS spa-
tial and frequency scale, where the effect is particularly important, one should allow for at least two
different constants γ1 and γ2 to mimic the variation in tensor γij(q). A simple qualitative treatment
of the Akhiezer effect is then possible, as originally provided by Bömmel and Dransfeld [13]. As
their starting point, they have split all phonon modes in two distinguished groups — those, experi-
encing positive temperature changes and those, experiencing negative or no temperature changes.
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2.3.2 Boltzmann equation

Our quantitative description of the processes of heat generation and redistribution in thin flexu-
ral beams has been achieved by applying the Boltzmann formalism to capture dynamics of the
non-equilibrium phonon distribution resulting from the spatially inhomogeneous mechanical com-
pression and dilation. Introducing the instant distribution function N(q, r, t) for the population of
the phonons in the beam, a thermal equlibrium distribution function

N0(ω, T ) ≡ N0(�ω/kT ) = [exp(�ω/kT ) − 1]−1 ,

its derivative N ′
0 in respect to x = �ω/kT , further splitting N into the “equilibrium” part N0(�ω/kT0),

corresponding to the local phonon frequencies ω (defined by the spatially inhomogeneous strain)
and the equlibrium temperature T0, and the non-equilibrium part N1(q, r, t) = N(q, r, t)−N0(�ω/kT0),
we can linearize the original Boltzmann equation for the phonon distribution function(

∂N

∂t

)
coll

=
∂N

∂t
+

∂N

∂r
· ∂ω

∂q
− ∂N

∂q
· ∂ω

∂r

to arrive at (
∂N

∂t

)
coll

=
∂N1

∂t
+ N ′

0

�ω0

kT0

∂α

∂t
+ v0 · ∂N1

∂r
. (7)

Here the mode velocity v0 = ∂ω0/∂q. We would like to note that this particular linearization is
different from another commonly performed splitting N = N0(ω0, T0) + Ñ1, where frequency ω0

is used in the true equilibrium part.
Treating the collision term in the effective relaxation time approximation, we let(

∂N

∂t

)
coll

=
N − N0(ω, T )

τph

, (8)

where τph(q) is the phonon relaxation time. There are a number of subtle issues associated with
this equation. First, it is a heuristic approximation to the realistic microscopic description for the
phonon-phonon interactions [14]. Even then, actually two classes of phonon-phonon scattering
processes take place, normal processes that conserve total momentum of the colliding pair and
umklapp process, that do not conserve total momentum. As written in Eq. (8), it is implicitly
assumed that the umklapp processes dominate, so as the asymptotic phonon distribution can be
characterized by a single parameter — local equlibrium temperature T . Further, this local equlib-
rium temperature T should not be defined by averaging phonon distribution only at a single spatial
point; instead, it should be obtained by averaging over the area of the size of about lph. Thus, it is
clear, that T should approach T0 as the beam thickness becomes smaller than lph. Nevertheless, it
can be shown that treating T as a single-point quantitity produces virtually identical results for the
losses even in the limit of t < lph.

Now we consider a case of substantially different spatial scales L � t for the Euler-Bernoulli-
Boltzmann resonator, allowing to assume that all thermal transfer is essentially one-dimensional
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and takes place along axis y in the plane of the cross section. Seeking oscillatory solutions of N1

with flexural fundamental frequency Ω, we obtain

(1 − iΩτph)N1 − v0τph cos θN ′
1 = N ′

0

�ω0

kT0

(
iΩτphα(y) − T1

T0

)
(9)

with the temperature difference T1 = T − T0 defined by the total energy balance in scattering
processes, i. e., ∫

dq �ω

(
∂N

∂t

)
coll

= 0. (10)

Further progress can be made (i) by assuming the Debye model (ω = c0q) with the q-independent
velocity v0 ≡ c0 and (ii) by assuming that the relaxation time τph is also phonon mode-independent.
Expanding then Eq. (10) to the first order in the relaxation approximation, we obtain

1

4π

∫
dθ sin θ

∫
dq q2

�ω(q)N1 = −T1

2π

∫
dq q2

[
�ω0(q)

kT0

]2

kN ′
0. (11)

The equation for r.h.s. is easily recognizable: recalling that the specific heat of mode q is

S(q) = −
[

�ω0(q)

kT0

]2

kN ′
0,

and the heat capacity of the phonon subsystem (per unit volume)

C =
1

2π

∫
dq q2S(q),

we simply get for the r.h.s. of Eq. (11), CT1.
Now assuming momentarily that the Grüneisen tensor γ is also a q-independent scalar constant

as given by Eq. (6), we can multiply Eq. (9) by phonon energy and, integrating it over modulus q,
get an equation for

f(y, cos θ) =
1

4π

∫
dq q2

�ω0N1

(1 − iΩτph)f − lph cos θf ′ =
C

2
[T1 − iΩτphT0α(y)] . (12)

Using Eq. (6) expressing α(y) via γ and the flexural mode deflection amlitude u(z), it is also
convevient to introduce a function fγ:

f ≡ (1 − 2σ)γu′′(z)fγ.

Here the advantage lies in the explicit factorization of the z dependence, i. e. fγ is functionally the
same along the beam length. The Eq. (12) should be accompanied by the physically meaningful
boundary conditions and then solved numerically either directly or as a series expansion. To get a
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flavor of the involved mathematics, we mention a particular possible expantion of f

f =
∑

n

Yn(y)Pn(cos θ) = Y0 + Y1 cos θ + . . .

where Pn(x) are Legendre polynomials. Making use of their properties, one can multiply Eq. (12)
for f by various Pm and integrate over angle θ to obtain

(1 − iΩτph)Yn − lph

(
n

2n − 1
Y ′

n−1 +
n + 1

2n + 3
Y ′

n+1

)
= (iΩτphCT0α(y) + Y0) δn0,

which should be furhter solved accompanied by appropriate boundary conditions.

2.3.3 Phonon related losses in flexural beams

As it was mentioned above, a conseptually similar problem of sound attenuation in dielectric crys-
tals was considered in [12, 13]. Unlike these publications where an infinite domain with solutions
in the form of plane waves was analyzed, here we are forced to operate with solutions on the finite
domain in presence of spacial inhomogeneities. The average rate at which the energy is removed
from the flexural vibration is equal in the steady state to the rate Z of transfering energy from the
phonon system to the heat bath [15]

Z = −
∑
q,j

〈
H

(
∂N

∂t

)
coll

〉
.

Using Eq. (7) to express the collisional term via time derivative of N , drift and diffusion terms,
and further removing terms that time average to zero, we find

Z =
1

16π3

∫
V

dr

∫
dq �ω0Re

{
N∗

1

∂α

∂t

}
. (13)

With Q−1 defined as the fraction of the oscillation energy lost per radian of flexural vibration, total
flexural energy W given by Eq. (5), and average rate of energy transfer Z defined by Eq. (13), we
arrive at

Q−1 =
Z

ΩW

for the inverse of the resonator quality factor Q.
Invoking previously made approximations of (i) a large beam aspect ratio, (ii) the Debye model,

and (iii) constant scalar Grüneisen coefficient, we can perform a number of partial integrations to
get, in terms of function fγ:

Z = Ω
(1 − 2σ)2γ2w

4π2

∫
L

dz [u′′(z)]
2

∫
t

dy y

∫
dθ sin θ Im {fγ}

for the particular beam mode u(z). With N1 (or f ) found, phonon-related losses in the beam can
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be numerically evaluated.
Again, we stress here that when the assumption of the one dimensional thermal transport (case

of a relatively long beam, that is L � t) is not valid, N1 cannot be factorized to effectively
separate the coordinate z along the beam, then leaving us with a complex system of PDEs to be
solved numerically.

2.3.4 Analysis of internal thermal phonon flow inside the beam in the (comparatively sim-
ple) limit of large aspect ratio L/t � 1 (L ≈ultrasubmicron)

Major outcomes of the phenomelogical descriptions can be reproduced, and corresponding char-
acteristic parameters can be established in the framework of the unified formalism:

• Fourier’s heat transfer at long times (t > τph) and large distances (l > lth) [8, 16];

• non-Fourier heat transfer at short times and distances [17]; specifically, since NEMS with
GHz frequencies are very small (t < lph), thermoelastic mechanism is dominated by the
non-Fourier heat transfer, but, in any case, is of relatively minor importance;

Figure 4: Magnitude of losses. Color code: blue—high Q, low losses, red—low Q, high losses. Here
we assume equality of the thermoelastic and microscopic phonon-phonon prefactors, and plot the quality
factor for the first flexural mode of the NEMS resonator as a function of the beam length L and thickness t
due to both mechanisms together. To stay mostly in the limits of validity of the Euler-Bernoulli theory, one
should consider only beams with L ≥ 5t. While prefactor and τph depend only on the material properties,
Ω1 ≡ 2πν1 and τdiff are obviously functions of the beam geometry. As one reduces beam dimensions,
he can clearly see a crossover in the scaling law around t =a few lph, when, with increasing resonator
frequency the thermoelastic mechanism gives in to the phonon-phonon microscopic losses. Quantitatively,
for a specific beam aspect ratio L/t = 10, a 10 GHz NEMS has substantially higher losses than a 1 GHz
resonator.
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• distortion by strain of the inter-branch local thermal equilibrium and inter-branch phonon-
phonon thermalization—the Akhiezer dissipation mechanism associated with the entropy
production due to inter-branch phonon-phonon thermal equilibration [11, 13] actually dom-
inates in small structures.

• In quantitative terms, a 10 GHz silicone NEMS resonator with L = 10t has substantially
higher losses than a 1 GHz resonator.

2.4 Surface effects

Rather common outcome of numerical simulatons and experimental observations in MEMS is that
the reduction of the resonator size leads to a substantial reduction in the quality factor Q [18, 19].
A feasible explanation for this trend is that microresonator mechanical losses are determined to
a great degree by microstructure surfaces and surface-assisted processes. With down-scaling of
the resonator, a larger fraction of the beam atoms are found at the surface. Indeed, a0S/V grows
linearly with reduction of the beam. A word of caution should be given, although: as it was shown
above, progressive miniaturazation directly leads to the increase in the frequency of the fundamen-
tal mode and, consequently, growth of the losses due to the Akhiezer effect. Coincidentally, the
scaling law for this mechanism also follows the S/V dependence.

Experimental work by Mihailovich and MacDonald [18] suggest a presence of losses due to
irregularities and damage of the crystal structure in the vicinity of the reactive-ion etched surfaces.
Obviously, their relative influence will extend with reduction of the resonator. Damage-healing
treatment was suggested to overcome this negative effect, considering that the NEMS structure
can withstand them. It was shown that, for example, thermal oxidation can reduce losses due to
etched surfaces by a factor of two.

Surface tension and the possible reconstruction on the surface lead to the size-dependence of
the effective elastic modulii and material density, the phenomenon observed experimentally [20],
as well as in the numerical simulation [19]. Authors of [19] even suggest that they were also
able to identify effects of the reconstruction of the material at corners of the beam. These effects
of surface on the effective material constants directly contribute to the further deviation from the
established scaling laws for the resonator frequency, but only indirectly and negligibly to the loss
factors. A different mechanism — notable enhancement of the third- and fourth-order anharmonic
phonon-phonon interaction in presence of the static strain in the surface layer could leads to the
direct dependence of the τ beam

ph on the surface-to-volume ratio. For example, one can qualitatively
write

1

τ beam
ph

≈ 1

τ bulk
ph

+
a0S

V

1

τ surf
ph

where, presumbly, τ surf
ph � τ bulk

ph .
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2.4.1 Boundary conditions at beam interfaces for phonon distribution function

We have developed a heuristic approach to incorporate both surface-assisted and anharmonic cou-
pling of flexural modes with thermalized phonons, focusing especially on treatment of the non-
equilibrium phonons in the limit of the high frequency fundamental mode of the resonator. As
a result, influences of the naturally existing beam surface strain and surface roughness could be
integrated into the general description of the phonon flow through a set of heuristic parameters de-
scribing scattering and thermalization due to interfaces. For example, one can heuristically force
the phonon distribution N to satisfy the physically meaningful boundary condition for the partial
specular reflection, i. e.,

N |π−θ = pN |θ<π/2 + (1 − p)N0(ω, Tb), (14)

or, linearized in terms of the N1

N1|π−θ = pN1|θ<π/2 − (1 − p)N ′
0

�ω

kT0

Tb1

T0

, (15)

Here the parameter 0 ≤ p ≤ 1 quantifies the part of reflected phonons: p is unity for perfect
specular reflection and zero for no specular reflection contribution; we further assume that the
complementary part, (1 − p), is instantly thermalized due to interaction with the interface—this
assumption is actually slightly different than the usual assumption of isotropic diffusive scattering
[21]. Further, Tb = T0 + Tb1 is the local boundary temperature. This approach allows for incor-
poration of surface effects and estimation of their scaling properties in terms of surface-to-volume
importance as the resonator geometry approaches the nanolimit.

It is noted that the influence of “total” thermalization (1 − p) at interfaces can be qualitatively
interpreted in the following way — assuming dominating ballistic transfer of phonons across the
width of the beam, then it follows as a consequence that

1

τ beam
ph

≈ 1

τ bulk
ph

+
1 − p

τballistic

,

which means that the position of the phonon loss peak in the lower part of Fig. 4 shifts away
from its original vertical location at approximately Ωτ bulk

ph = 1 as a function of the specularity
coefficient p. Therefore, one can expect an influence of p on the intensity of degradation processes
and, therefore, Q in the high frequency limit.

From this vignette, one can see an excellent opportunity to explore further the overall impor-
tance of surface connected behavior on scaling properties of NEMS structures in a user friendly
and quantitative manner.

2.5 Final observations

In summary, we have considered non-equilibrium heat generation and redistribution processes
from mechanical strain during high frequency NEMS operation beyond the conventional heat dif-
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fusion and local temperature approximation. A semiclassical phonon dynamical picture was in-
troduced to go beyond the conventional models. Scaling laws relevant to the appropriate phonon
transport regimes and their transition boundaries were delineated and analyzed; the advanced the-
oretical analysis was formulated and conducted in the Boltzmann framework to capture the proper
phonon dynamics inside flexural beams. Further, surface properties were heuristically included
into the model description opening avenues to meaningful analytical assessment of the surface
effects on the dissipation in NEMS.

As a result of this study, the intrinsic mechanisms and related analytic principles defining
NEMS degradation with scaling have been developed, and have been expressed in a user friendly
form for application. It is timely, therefore, to consider a follow on study to pursue the analytic and
numerical application of the developed principles so that realistic values of Q can be calculated for
actual resonator materials and geometries.
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